Efficient Route Planning on Public Transportation Networks: A Labelling Approach

Sibo Wang†, Wenqing Lin†, Yi Yang§, Xiaokui Xiao†, and Shuigeng Zhou§

1. Problem Definition

- **Public Transportation Network**
 - Each edge (u, v, t₁, t₂, w₁, w₂, b) denotes the bus b departs from station u at timestamp t₁ and arrives at station v at timestamp t₂.
- **Route Planning Queries**
 - Earliest Arrival Path (EAP)
 - Depart from u, arrive at v, how to arrive at v.
 - Latest departure Path (LDP)
 - Depart at t₁, arrive at v, how to depart from u before timestamp t₁.
 - Shortest Duration Path (SDP)
 - Depart from u, arrive at v, shortest travel duration.

2. Timetable Labelling

- **Node order o**
 - A total ordering: for any u and v, we have o(u) > o(v) or o(u) < o(v).
 - u has a higher rank than v if o(u) < o(v).
- **Each node v has an in-label set L_in(v)** (resp. out-label set L_out(v)). Each label is a tuple \(l = (s, t₁, t₂, w₁, w₂, b) \), where
 - s: the starting node (resp. ending node) of a path P from x to v (resp. v to x).
 - P: among all nodes on P, s has the highest rank.
 - \(t₁, t₂, w₁, w₂, b \): path P departs at time t₁ and arrives at time t₂, by taking bus b. If bus transfer is required, b is null.
 - No dominated path P exists such that P has the same starting node and ending node as P with departure time \(t₁ \) and arrival time \(t₂ \), but \([s, t₁, t₂, w₁, w₂, b] \subseteq [s, t₁, t₂, w₁, w₂, b] \).
- **Index Construction**
 - Forward EAP traversal.
 - From the largest timestamp \(t \) non-dominance guarantee → \(P_t \).
 - Next largest timestamp \(t' \) not dominated by \(P_t \) non-dominance guarantee.
- **Node Ordering**
 - An \(\text{vfm} \)-Approximation Algorithm.
 - Adaptive coverage \(R(v) \) of non-dominated paths not covered by ordered vertices \(v₁, v₂, v₃, \ldots \).
 - Node with maximum \(R(v) \), we have \(o(v) = i, \ldots, v \).
 - Time complexity \(O(n² - m) \), where \(n \) and \(m \) are numbers of nodes and edges respectively.
- **A Heuristic algorithm**
 - Estimate adaptive coverage with sampling.

3. Query Processing

- **Phase 1: Candidate Generation.**
 - Consider the paths from u to v.
 - Given \(l₁ = (w₁, t₁, t₂, v₂) \in L_out(u) \) and \(l₂ = (w₂, t₂, t₃, v₃) \in L_in(v) \) where \(t₂ ≤ t₃ \),
 - Concatenating path pertinent to \(l₁ \) and \(l₂ \), add \((l₁, l₂)\) to a candidate set \(\Sigma \).
- **Pruning Techniques**
 - Exp-1: non-dominance guarantee.
 - Each label is dominated by exactly one label with the same starting node and the same ending node.
 - Given \((v₁, v₂, v₃)\) and \((u₁, u₂, u₃)\),
 - Earliest arrival path: \((v₁, v₂, v₃)\) and \((u₁, u₂, u₃)\) are non-dominated.
 - Latest departure path: \((v₁, v₂, v₃)\) and \((u₁, u₂, u₃)\) are non-dominated.

4. Preprocessing

- **Route-based Compression**
 - Labels with vehicle info
 - Route compression: \(L_{out}(v₄) \rightarrow L_{out}(v₃) \)
 - Time complexity:
 - Exp-3: Preprocessing Time.
 - Concise Representation of Query Results
 - Set \(P = \{ (v₁, v₂, 7, 9, b₁), (v₁, v₂, 9, 10, b₂) \} \)
 - \(P \) can be denoted by a concise path \(P_c \), as follows:
 - \(P_c = (v₁, 7, b₁, v₂, 11, b₂) \)
 - Reduce path unfolding cost.
 - Improving query performance.
 - Exp-4: Compression Ratios.
 - \(A₁ \): Route-based compression.
 - \(A₂ \): Pivot-based compression.
 - \(A₃ \): Route-based and Pivot-based compression.

5. Optimizations and Extensions

- **Label Compression**
 - Route-based compression
 - Labels with vehicle info
 - Compress to \((v₉, 5, 9, b₂, v₂)\) from \((v₉, 10, 13, b₄, v₂)\)
 - Pivot-based compression
 - \(o(u) < o(p) < o(v) \)
 - Consider \(l₁ = (s, t₁, t₂, w₁, w₂, p) \) and \(l₂ = (s, t₂, t₃, p, w₃) \) where \(t₂ ≤ t₃ \),
 - If \(l₁ = (s, t₁, t₂, w₁, w₂, p) \), then \(l₁ \leq l₂ \).
 - Compress to \(L₉₄₃ = \{ u, null, null, null, p \} \)
 - Label dependency can be used to build a weighted dependency graph.
 - NP-hard: maximum-weight independent set

6. Datasets

- **Datasets**
 - City
 - Austin: 27.3K
 - Boston: 44.6K
 - Chicago: 151.8K
 - Los Angeles: 121K
 - New York: 264.2K
 - Miami: 685.0K
 - San Francisco: 36K
 - San Diego: 71.4K

- **Competitors**
 - CSA [Dibbelt et al. SEA’13, Wu et al. VLDB’14]
 - CHT [Geisberger et al. SEA’10]